

The Dark Energy Survey and primordial non-Gaussianity

Carlos Cunha
University of Michigan
May 14, 2011

The Dark Energy Survey

- Study Dark Energy using 4 complementary techniques:
 - I. Cluster Counts
 - II. Weak Lensing
 - III. Baryon Acoustic Oscillations
 - IV. Supernovae
- Two multiband surveys:

Main: 5000 deg² ≈ 5 (h⁻¹Gpc)³ 300 million galaxies

g, r, i, z, Y to 24th mag

SNe: 15 deg² repeat

 Build new 3 deg² FoV camera and Data management sytem in Blanco 4-m telescope

Survey 2012-2017 (525 nights)

Camera available for community use the rest of the time (70%)

www.darkenergysurvey.org

The DES Collaboration

Fermilab

University of Illinois at Urbana-Champaign/NCSA

University of Chicago

Lawrence Berkeley National Lab

NOAO/CTIO

DES Spain Consortium

DES United Kingdom Consortium

University of Michigan

Ohio State University

University of Pennsylvania

DES Brazil Consortium

Argonne National Laboratory

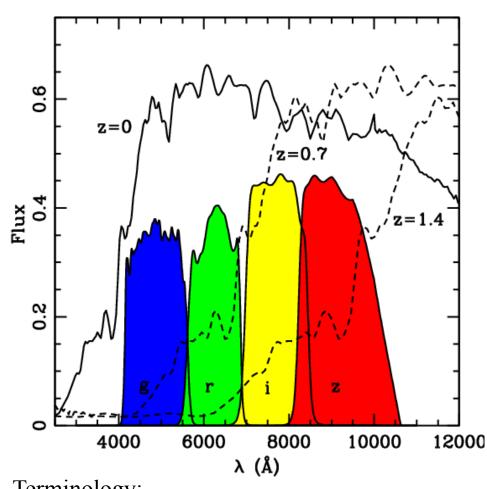
SLAC-Stanford-Santa Cruz Consortium

Universitats-Sternwarte Munchen

Texas A&M University

Over 120 members plus students & postdocs

Funding: DOE, NSF, STFC, MEC, FINEP, Excellence Cluster, collaborating



Photometric surveys for theorists

- Collect light from galaxies in several broad-band filters in optical and near-IR.
- grizY (DES) + JK (Vista)
- Use flux in each filter to determine:
 - type:star/gal./QSO
 - gal. type: spiral, elliptical, ...
 - (photometric) redshift
- Also have angular and shape information

Terminology:

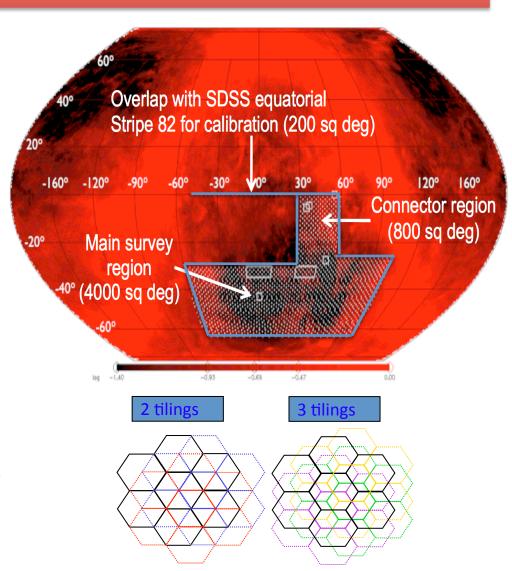
magnitude = A - log(flux)color = magnitude - magnitude

Observational issues for f_{nl} measurement

- Artificial correlations can mimic f_{nl} . For $f_{\rm NL}^{\rm local}$, separations >100 Mpc (several degrees) are crucial.
- Artificial correlations can be due to:
 - photometric calibration
 - photometric redshifts
 - star/galaxy separation

More relevant for galaxies than clusters

Because of 1/k² scale dependence of bias

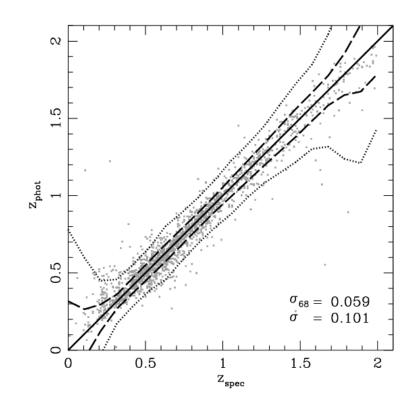

$$b(k) = b_G + f_{NL} \frac{const}{k^2}$$

Clusters have own selection issues (more later ... maybe)

DES Photometric Calibration

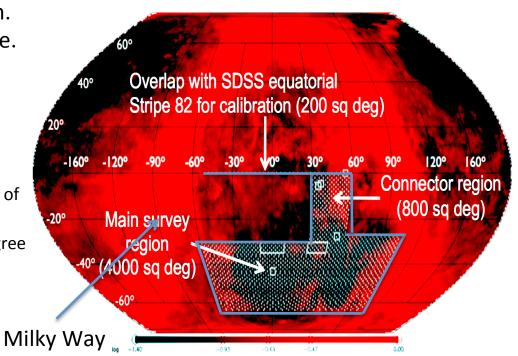
- Deal with: telescope/camera, atmosphere, seasons, Moon, Milky Way.
- Multiple overlapping tilings with varying orientations + standard stars + ...
- DES: 2 survey tilings/filter/year
- Need contiguous area that overlaps existing surveys.

DES Goal: 1% photometry over all survey area (BaO requirement is 2%).

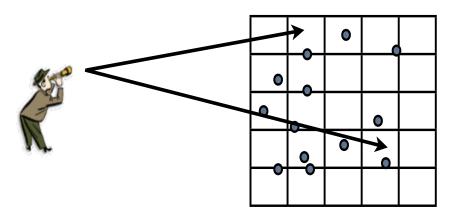

DES Photo-zs

- Combination DES (optical)+Vista (IR) yields robust photo-zs.
- LRGs have even better scatter.
- Errors need to be modeled carefully, but f_{NL} requirements weaker than WL.
- For clusters $\sigma_7 = 0.02$.

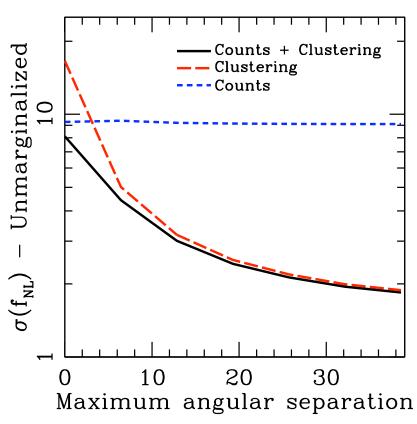
Rough numbers:


 $\Delta z=0.1 \Rightarrow \Delta d_c = 1-2 \times 10^2 h^{-1}$ Mpc over survey redshift range.

100 Mpc ≈ 3 deg at z=1.


Star/Galaxy separation

- Distribution of stars is not random.
 Pronounced variation with latitude.
- Classification using colors (magnitudes)
- BAO requirement:
 - probabilities accurate to 1%
 - stellar contamination and distribution of misclassified galaxies smaller than 9% over all survey (< 2% on scales < 4 degree
- Good enough for f_{NL}?



f_{NL} constraints with DES clusters

Cluster counts-in-cells and sample covariance

About 1.7×10^5 clusters expected ($M_{th} = 10^{13.7} h^{-1} M_{sun}$)

Cunha, Huterer, Dore 2010

Many cluster systematics under control

The effects of photo-z uncertainties				
Nuisance parameters				
Halo bias	$M_{ m obs}$	$\sigma(\Omega_{ m DE})$	$\sigma(w)$	$\sigma(f_{ m NL})$
Known	Known	0.016	0.041	6.49
Marginalized	Known	0.021	0.053	6.69
Known	Marginalized	0.106	0.36	9.39
${\bf Marginalized}^a$	${\bf Marginalized}^a$	0.23^{a}	0.77^{a}	18.8^{a}

Mass calibration with:

- Weak Lensing
- SZ clusters (South Pole Telescope)
- IR clusters (Spitzer)
- X-Ray clusters

With reasonable priors can get $\sigma(f_{NL})$ of a few.

Cunha, Huterer, Dore 2010

Clusters vs. Galaxies

- Galaxy catalogs will be much bigger but,
- It's the large halo-halo separations that have the signal.
- Clusters are more directly related to the haloes.
- Clusters can be binned by mass.
- Combination of different tracers potentially very powerful.
 See N. Hamaus' talk.

Conclusions

- DES should place tight constraints (better than Planck) using several complementary strategies (WL, galaxies, clusters, QSO's).
- Cross-check between techniques will be key to controlling systematics.
- Major focus for calibration of photometric surveys has been on BaO and WL constraints for Dark Energy. Need to check what's happening on larger scales.